Data reduction for spectral clustering to analyze high throughput flow cytometry data
نویسندگان
چکیده
منابع مشابه
High-throughput flow cytometry data normalization for clinical trials.
Flow cytometry datasets from clinical trials generate very large datasets and are usually highly standardized, focusing on endpoints that are well defined apriori. Staining variability of individual makers is not uncommon and complicates manual gating, requiring the analyst to adapt gates for each sample, which is unwieldy for large datasets. It can lead to unreliable measurements, especially i...
متن کاملAnalysis of High-Throughput Flow Cytometry Data Using plateCore
Flow cytometry (FCM) software packages from R/Bioconductor, such as flowCore and flowViz, serve as an open platform for development of new analysis tools and methods. We created plateCore, a new package that extends the functionality in these core packages to enable automated negative control-based gating and make the processing and analysis of plate-based data sets from high-throughput FCM scr...
متن کاملComputational analysis of high-throughput flow cytometry data.
INTRODUCTION Flow cytometry has been around for over 40 years, but only recently has the opportunity arisen to move into the high-throughput domain. The technology is now available and is highly competitive with imaging tools under the right conditions. Flow cytometry has, however, been a technology that has focused on its unique ability to study single cells and appropriate analytical tools ar...
متن کاملSample Clustering of Flow Cytometry Data
Flow cytometry technique produces large, multidimensional datasets of individual cells that are helpful for biomedical science and clinical research. Given the size of the data, efficient computational analysis techniques are necessary to assist researchers in understanding and interpreting the data. Automatic cluster analysis of samples based on flow cytometry data is a powerful and promising ...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2010
ISSN: 1471-2105
DOI: 10.1186/1471-2105-11-403